Ecology of desiccation tolerant plants

Desiccation-tolerant (DT) plants can survive the loss of 80–95% of their cell water, so that the plants appear completely dry and no liquid phase remains in their cells; after a shorter or longer period in the desiccated state, they revive and resume normal metabolism when they are remoistened. They revive after rehydration and maintain a metabolic activity rate similar to that before desiccation. It is surprising that amongst (terrestrial) plants this phenomenon is widely distributed and common in several vegetation types in every climatic area of the Earth (from the Equator to the Polar Regions) and in some regions these species are dominant.

DT flowering plants can be classified as so-called homoiochlorophyllous (HDT) and poikilochlorophyllous (PDT) types. The success of the HDT mechanism depends on the effectiveness of maintaining the structures, which are mainly exposed to the damage. However PDT-s lose their chlorophylls and thylakoid membranes during desiccation. This fact also shows that desiccation and revival afterwards very drastically influence the whole photosynthetic system and as well physiological function of these plants. Exploring the backgrounds of their extreme ability to tolerate unfavourable stress conditions can help us how homoiohydric plants, like crops should be modified in order to strengthen their stress tolerance.

Aim of the project to characterise the desiccation and reviving processes of desiccation tolerant plants using mainly tropical cryptogam and vascular HDT and PDT plants; revealing the details of PDT strategy; clearing the ecological role of the HDT and PDT strategies

The research carries out in the ecophysiology laboratory of the Institute.


Partners: Tamás Pócs (Eszterházy Károly Collage, Hungary), Katya Georgieva (Bulgarian Academy of Sciences, Bulgaria), Stefan Porembski (University of Rostock, Germany), Jill Farrant (University of Cape Town, South Africa)


2002-2003 - TéT-DAK, South African-Hungarian bilateral project: ’Mechanisms of desiccation tolerant plants on normal and elevated air CO2 level’
2004-2006 – HAS-Bulgarian bilateral project: ’Ecophysiological responses of homoiochlorophyllous (Haberlea rhodopensis) and poikilochlorophyllous (Xerophyta scabrida) plants’
2007-2008 - TéT-China, Chinese-Hungarian bilateral project: ’Ecophysiological investigations of desiccation tolerant plants of tropical inselbergs’
2007-2009 - HAS-Bulgarian bilateral project: ’Ecophysiological responses of homoiochlorophyllous (Haberlea rhodopensis) and poikilochlorophyllous (Xerophyta scabrida) plants’
2009-2010 - TéT-DAK, South African-Hungarian bilateral project: ’Ecophysiology of poikilohydric plants with ability of desiccation-tolerance’


Péli E R, Mihailova G, Petkova S, Tuba Z, Georgieva K. (2012). Differences in physiological adaptation of Haberlea rhodopensis Friv. leaves and roots during dehydration–rehydration cycle. Acta Physiologiae Plantarum. DOI: 10.1007/s11738-011-0891-9.
Georgieva K., Ivanova A., Doncheva S. Petkova S., D. Stefanov D., Péli E., Tuba Z. (2011): Changes in fatty acid content during reconstitution of the photosynthetic apparatus in the leaves of poikilochlorophyllous air-dried Xerophyta scabrida during rehydration. Biologia Plantarum, 55(3): 581-585. DOI: 10.1007/s10535-011-0067-x.
Nagy-Déri H., Péli E.R., Georgieva K., Tuba Z. (2011): Changes in chloroplast morphology of different parenchyma cells in leaves of Haberlea rhodopensis Friv. during desiccation and following rehydration. Photosynthetica. 49(1): 119-126.
Georgieva K., Szigeti Z., Sárvári E., Gáspár L., Maslenkova L., Peeva V., Péli E., Tuba Z. (2007): Photosynthetic activity of homoiochlorophyllous desiccation tolerant plant Haberlea rhodopensis during dehydration and rehydration. Planta, 225: 955-964.
Péli E., Mihailova G., Petkova S., Georgieva K. (2008): Root respiration in whole Haberlea rhodopensis Friv. plants during desiccation and rehydration. Acta Biologica Szegediensis, 52: 115-117.
Péli E.R., Peeva V., Georgieva K., Tuba Z. (2005): Some responses of the homoiochlorophyllous desiccantion-tolerant dicot Haberlea rhodopensis Friv. to desiccation and rehydration. Cereal Research Communications, 33(1):293-295.
Péli E.R., Peeva V., Georgieva K., Tuba Z. (2005): Investigation of the homoiochlorophyllous desiccation-tolerant dicot Haberlea rhodopensis Friv. During dessication and rehydration. Acta Biologica Szegediensis 49: 173-174.
Péli E., Balogh J., Czóbel Sz., Porembski S., Tuba Z. (2006): Széles elterjedésű trópusi kiszáradástűrő vegetáció C- és N- körforgalmának néhány ökofiziológiai vonatkozása. KvVM-MTA „VAHAVA”, március 9. Poszter.
Tuba Z., Csintalan Zs., Balogh J., Czóbel Sz., Péli E., Pócs T., Porembski S., Georgieva K. (2006): Növényi kiszáradás és trópusi Inselberg-ökofiziológia: poikilohidrikus vízgazdálkodásra és az ismertektől eltérő fotoszintetikus szerkezetekre épülő növényi működés. VII. Magyar Ökológus Kongresszus, Budapest, 2006. szeptember 4-6, 215.
Balogh J., Czóbel Sz., Péli E., Porembski S., Tuba Z. (2005): Ecophysiological investigation of tropical desiccation-tolerant vascular plants. In: Abstracts of XVII International Botanical Congress, Vienna, Austria, P1890, 536.
Péli E., Balogh J., Georgieva K., Peeva V., Tuba Z. (2004): The effect of various water conditions on the survival of desiccation-tolerant Haberlea rhodopensis Friv.. III. Alps-Adria Scientific Workshop, 49-53.